Weekly Deals! Shop with Discounts.

Home

Contact Us

Downloads

Reseller Login

Aftersale&Forum

Battery Pack Information Lookup

Get Data of Your Gobel Power Battery
Decode
GP-SR1-PC200 Premium Example: GPEV280H240520R1006
GP-SR1-PC200 Standard Example: GPHC280H240401R1003
GP-SR1-PC200 Standard Example: GPEV280H240927R1001
GP-SR1-PC200 Basic Example: GPCN280L240809R1001
GP-SR1-PC314 Premium Example: GPEV314H240921R1012
GP-SR3-PC100 Example: GPEV100H240930R1003
GP-LA12-280AH Premium Example: GDEV280H240307R1008
GP-LA12-280AH Standard Example: GDHC280H240312R1401
More Examples
SN Capacity (Ah) Max Charge Voltage (V) Min Discharge Voltage (V) BMS
GPEV314H250224R1002 327.00 57.80 43.04 GP-PC200 BMS
GPHC280H240422R1203 294.00 56.69 42.78 GP-JK200 BMS
GPEV280H240905R1020 306.00 57.45 42.68 GP-RN200 BMS
GPEV280H230616R1015 303.00 57.54 41.49 GP-PC200 BMS
GPEV280H231227R1003 299.00 57.99 42.08 GP-PC200 BMS
GPEV314H241105R1016 326.00 57.18 41.88 GP-PC200 BMS
GPEV280L230523R2001 297.00 57.02 41.97 GP-PC200 BMS
GPHC280H240817R1006 294.00 56.55 42.08 GP-PC200 BMS
GPHC280H240925R2902 293.00 57.70 41.03 GP-PC200 BMS
GPEV280H231220R1009 300.00 58.00 41.95 GP-PC200 BMS
GPEV280L230523R2403 305.00 56.77 41.37 GP-PC200 BMS
GPHC280M250325R1002 289.00 57.04 43.80 GP-RN200 BMS
GPEV280H231123R1001 303.00 58.00 41.83 GP-PC200 BMS
GPEV280L230523R2405 306.00 56.99 41.51 GP-PC200 BMS
GPRP280L240102R3207 282.00 57.40 41.10 GP-PC200 BMS
GPEV280H240729R1001 302.00 58.00 41.50 GP-PC200 BMS
GPHC280H240615R1201 294.00 56.10 41.40 GP-PC200 BMS
GPEV280H240710R1003 304.00 57.78 41.56 GP-PC200 BMS
GPHC280H240822R1601 295.00 57.62 42.52 GP-JK200 BMS
GPEV280H231204R1003 303.00 58.00 43.42 GP-PC200 BMS
Specification of The Battery

Pack SN:GPHC280H241116R1202
Pack Type: 51.2V LiFePO4 Battery
Pack Grade: Standard
BMS Type: GP-PC200 BMS
Balancer: 4A Bluetooth Active Balancer
Heater: With Heater
Cell Type: Hithium 280
Cell Grade: HSEV
Cells Connection: 16S1P
Pack Test Result

Full Capacity: 291.00 Ah (14.90 kWh)
Max Charge Voltage: 57.17 V
Min Discharge Voltage: 42.31 V
Charge Test Steps
  • Charging at a constant current of 100A, with a maximum charging voltage of 55.5V.
  • Charging at a constant voltage of 55.5V, with a cutoff current of 40A.
  • Charging at a constant current of 40A, with a maximum charging voltage of 58V.
  • Document the maximum charging voltage when the voltage of a single cell reaches 3.65V.
  • * Tested without deliberated active balance procedure.
Discharge Test Steps
  • Discharging at a constant current of 100A.
  • Document the minimum discharging voltage when the voltage of a single cell reaches 2.5V.
  • * Please be aware that the charge/discharge curve and capacity of batteries can vary with changing temperatures throughout the seasons. In winter, tested capacity will be relatively lower.
Charge/Discharge Curve
(Based on GPHC280H241116R1202 Test Data)

Cells Information

Cell Id QR Capacity (Ah) OCV1 (mV) RI1 (mΩ) Self Discharge Thick (mm) Test Date
1 8 0IJCBA0A391111DCJ0023444 301.20 3,292.0 0.1775 0.0288 71.73 2023-12-24
2 16 0IJCBA0A391111DCJ0023738 301.21 3,291.6 0.1779 0.0286 71.72 2023-12-24
3 28 0IJCBA0A391111DCJ0024074 301.00 3,291.6 0.1784 0.0281 71.72 2023-12-24
4 33 0IJCBA0A551111DCJ0002327 301.04 3,292.3 0.1793 0.0287 71.75 2023-12-24
5 36 0IJCBA0A551111DCJ0002298 301.41 3,292.3 0.1806 0.0282 71.74 2023-12-24
6 38 0IJCBA0A551111DCH0029753 301.74 3,292.6 0.1793 0.0281 71.74 2023-12-24
7 46 0IJCBA0A391111DCJ0024267 301.02 3,292.3 0.1772 0.0287 71.71 2023-12-24
8 49 0IJCBA0A551111DCJ0000197 300.99 3,292.7 0.1803 0.0279 71.72 2023-12-24
9 50 0IJCBA0A391111DCJ0024070 301.16 3,291.5 0.1793 0.0274 71.73 2023-12-24
10 59 0IJCBA0A391111DCJ0024227 300.90 3,291.8 0.1778 0.0291 71.72 2023-12-24
11 65 0IJCBA0A551111DCH0029804 300.95 3,292.7 0.1816 0.0275 71.74 2023-12-24
12 88 0IJCBA0A551111DCH0029824 301.59 3,292.5 0.1798 0.0284 71.73 2023-12-24
13 94 0IJCBA0A391111DCJ0025550 301.29 3,292.3 0.1796 0.0278 71.73 2023-12-24
14 121 0IJCBA0A391111DCJ0024239 301.33 3,292.2 0.1792 0.0274 71.73 2023-12-24
15 143 0IJCBA0A391111DCJ0023983 301.42 3,292.0 0.1794 0.0275 71.72 2023-12-24
16 144 0IJCBA0A551111DCJ0001846 301.37 3,292.0 0.1839 0.0290 71.73 2023-12-24
Interest in our Products? Submit a Form and Get a Quote Get Quote
Why Cells Consistency is Important?

Cell consistency in a LiFePO4 (Lithium Iron Phosphate) battery, or indeed any type of battery, refers to the uniformity of the performance and characteristics of the individual cells within the battery.

When a battery is made up of multiple cells, it's important that each cell has the same capacity, internal resistance, self-discharge rate, and other performance characteristics. This is because the overall performance of the battery is only as good as its weakest cell. If one cell has a lower capacity or higher internal resistance, it can reduce the performance of the entire battery, and can even lead to premature failure of the battery.

In a series configuration, the same current flows through all cells. If one cell has a lower capacity, it will discharge faster than the others. Once this cell is fully discharged, the overall battery voltage will drop significantly, even though the other cells still have charge left. This can lead to underutilization of the overall battery capacity.

In a parallel configuration, all cells share the same voltage. If one cell has a higher self-discharge rate, it will drain the other cells to balance its voltage, leading to a faster overall discharge rate.

Moreover, inconsistencies between cells can lead to issues with balancing. Balancing is the process of ensuring all cells in a battery are at the same state of charge. This is typically done by either transferring charge from higher charged cells to lower charged ones (active balancing), or by dissipating excess charge in the higher charged cells (passive balancing). If the cells are inconsistent, it can make balancing more difficult and less effective.

Therefore, cell consistency is crucial for maximizing the performance, longevity, and safety of a battery. This is why Gobel Power puts a lot of effort into cell selection and sorting, to ensure that only cells with similar characteristics are used together in a battery.

Static parameters such as capacities, internal resistances, and voltage levels, though informative, may not provide a comprehensive picture of cell consistency in a LiFePO4 (Lithium Iron Phosphate) battery. A more practical and straightforward method to assess cell consistency involves monitoring the maximum charge voltage when a single cell reaches 3.65V. This is based on the understanding that if the cells exhibit good consistency, the voltage variation across them will be minimal, resulting in a higher overall maximum charge voltage. Therefore, observing the maximum charge voltage when one cell attains 3.65V can serve as a reliable indicator of the battery's cell consistency.

Home >>  Battery Pack Information Lookup
AI Chatbot